60. n个骰子的点数

1. 描述

把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

2. 例子

示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

3. 限制

  • 1 <= n <= 11

4. 题解

时间复杂度: O($MaxPoint^2n^2$)
空间复杂度: O($MaxPoint^n$)

动态规划
dp[i][j] 意味着第 i 个色子中所有点数和为 j 的情况数量
$ dp[i][j] = \begin{cases} 1, & \text{i == 1} \\
\sum_{i = 1}^{MaxPoint} {dp[i-1][j-i]} , & \text{i > 1} \\
\end{cases} $

class Solution 
{
private:
    const int MaxPoint = 6;

public:
    vector<double> dicesProbability(int n) 
    {
        vector<int> lastRoundPoints(MaxPoint * n + 1), currentRoundPoints(MaxPoint * n + 1);
        for(int i = 1; i <= MaxPoint; i++)
            lastRoundPoints[i] = 1;

        for(int round = 2; round <= n; round++)
        {
            for(int point = round; point <= round * MaxPoint; point++)
            {
                int sum = 0;
                for(int i = max(point - MaxPoint, round - 1); i < point && i <= MaxPoint * (round - 1); i++)
                    sum += lastRoundPoints[i];

                currentRoundPoints[point] = sum;
            }

            swap(lastRoundPoints, currentRoundPoints);
        }

        int valueCount = pow(MaxPoint, n);
        vector<double> probability((MaxPoint - 1) * n + 1);
        for(int i = n, j = 0; i <= MaxPoint * n; i++, j++)
            probability[j] = (double)lastRoundPoints[i] / valueCount;
        
        return probability;
    }
};
Last updated:
Tags:
comments powered by Disqus