133. Clone Graph
1. Description
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
Test case format:
For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
2. Example
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)’s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)’s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)’s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)’s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
3. Constraints
- The number of nodes in the graph is in the range [0, 100].
- 1 <= Node.val <= 100
- Node.val is unique for each node.
- There are no repeated edges and no self-loops in the graph.
- The Graph is connected and all nodes can be visited starting from the given node.
4. Solutions
Hash Table
n is the number of nodes
Time complexity: O(n)
Space complexity: O(n)
class Solution {
public:
Node* cloneGraph(Node* node) {
if (node == nullptr) {
return node;
}
if (cloned_nodes.find(node->val) != cloned_nodes.end()) {
return cloned_nodes[node->val];
}
Node* cloned_node = new Node(node->val);
cloned_nodes[node->val] = cloned_node;
for (const auto &neighbor : node->neighbors) {
cloned_node->neighbors.emplace_back(cloneGraph(neighbor));
}
return cloned_node;
}
private:
unordered_map<int, Node*> cloned_nodes;
};