146. LRU Cache

1. Description

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

2. Follow Up

  • Could you do get and put in O(1) time complexity?

3. Example

Example 1:
Input
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4

4. Constraints

  • 1 <= capacity <= 3000
  • 0 <= key <= 3000
  • 0 <= value <= $10^4$
  • At most $3 * 10^4$ calls will be made to get and put

5. Solutions

My Accepted Solution(Follow Up)

Get Time complexity: O(1)
Set Time complexity: O(1)

if we want to get or set a value with O(1) time complexity, we must use a map
at the same time, the process of delete may result in moving a node, also with O(1) time complexity, so it is a list

struct Node
{
    struct Node *prev, *next;
    int key, value;

    Node(int _key = 0, int _value = 0) : key(_key), value(_value) {prev = next = nullptr;}
};

class LRUCache 
{
private:
    unordered_map<int, Node*> nodes;
    Node *head, *tail;
    int size, capacity;

    void removeNode(Node *m_head)
    {
        m_head->prev->next = m_head->next;
        m_head->next->prev = m_head->prev;
    }

    void addToHead(Node *m_head)
    {
        m_head->next = head->next;
        m_head->prev = head;
        head->next->prev = m_head;
        head->next = m_head;
    }

    void moveToHead(Node *m_head)
    {
        removeNode(m_head);
        
        addToHead(m_head);
    }

    Node *removeLastNode()
    {
        auto node = tail->prev;
        removeNode(node);

        return node;
    }
public:
    // LRUCache(int capacity)
    LRUCache(int _capacity) 
    {
        size = 0;
        capacity = _capacity;
        head = new Node();
        tail = new Node();
        head->next = tail;
        tail->prev = head;
    }
    
    int get(int key) 
    {
        if(nodes.find(key) == nodes.end())
            return -1;
        
        auto node = nodes[key];
        moveToHead(node);

        return node->value;
    }
    
    void put(int key, int value) 
    {
        if(nodes.find(key) == nodes.end())
        {
            auto node = new Node(key, value);
            nodes[key] = node;
            addToHead(node);

            size++;
            if(size > capacity)
            {
                auto removedNode = removeLastNode();
                nodes.erase(nodes.find(removedNode->key));

                delete removedNode;
                size--;
            }
        }
        else
        {
            auto node = nodes[key];
            node->value = value;

            moveToHead(node);
        }
    }
};
Last updated:
Tags: Design
comments powered by Disqus