209. Minimum Size Subarray Sum
1. Description
Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, …, numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.
2. Example
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
3. Constraints
- 1 <= target <= $10^9$
- 1 <= nums.length <= $10^5$
- 1 <= nums[i] <= $10^5$
4. Follow Up
- If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).
5. Solutions
Sliding Window
n = nums.size()
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public:
int minSubArrayLen(int target, const vector<int> &nums) {
int min_length = INT_MAX;
for (int slow = 0, fast = 0, sum = 0; fast < nums.size(); ++fast) {
sum += nums[fast];
while (sum >= target) {
min_length = min(fast - slow + 1, min_length);
sum -= nums[slow];
++slow;
}
}
return min_length == INT_MAX ? 0 : min_length;
}
};