2300. Successful Pairs of Spells and Potions
1. Description
You are given two positive integer arrays spells and potions, of length n and m respectively, where spells[i] represents the strength of the $i^{th}$ spell and potions[j] represents the strength of the $j^{th}$ potion.
You are also given an integer success. A spell and potion pair is considered successful if the product of their strengths is at least success.
Return an integer array pairs of length n where pairs[i] is the number of potions that will form a successful pair with the $i^{th}$ spell.
2. Example
Example 1
Input: spells = [5,1,3], potions = [1,2,3,4,5], success = 7
Output: [4,0,3]
Explanation:
- $0^{th}$ spell: 5 * [1,2,3,4,5] = [5,10,15,20,25]. 4 pairs are successful.
- $1^{st}$ spell: 1 * [1,2,3,4,5] = [1,2,3,4,5]. 0 pairs are successful.
- $2^{nd}$ spell: 3 * [1,2,3,4,5] = [3,6,9,12,15]. 3 pairs are successful.
Thus, [4,0,3] is returned.
Example 2
Input: spells = [3,1,2], potions = [8,5,8], success = 16
Output: [2,0,2]
Explanation:
- $0^{th}$ spell: 3 * [8,5,8] = [24,15,24]. 2 pairs are successful.
- $1^{st}$ spell: 1 * [8,5,8] = [8,5,8]. 0 pairs are successful.
- $2^{nd}$ spell: 2 * [8,5,8] = [16,10,16]. 2 pairs are successful.
Thus, [2,0,2] is returned.
3. Constraints
- n == spells.length
- m == potions.length
- 1 <= n, m <= $10^5$
- 1 <= spells[i], potions[i] <= $10^5$
- 1 <= success <= $10^{10}$
4. Solutions
Binary Search (manual implementation)
m = spells.size(), n = potions.size()
Time complexity: O(nlogn + mlogn)
Space complexity: O(logn)
class Solution {
public:
vector<int> successfulPairs(const vector<int> &spells, vector<int> potions, long long success) {
sort(potions.begin(), potions.end());
vector<int> valid_pairs(spells.size(), 0);
for (int i = 0; i < spells.size(); ++i) {
long long min_multiplier = (success + spells[i] - 1) /
spells[i]; // compute ceil(success / spells[i]) using integer arithmetic
int left = 0, right = potions.size();
while (left < right) {
int middle = left + (right - left) / 2;
if (potions[middle] < min_multiplier) {
left = middle + 1;
} else {
right = middle;
}
}
valid_pairs[i] = potions.size() - left;
}
return valid_pairs;
}
};
Binary Search (STL)
m = spells.size(), n = potions.size()
Time complexity: O(nlogn + mlogn)
Space complexity: O(logn)
class Solution {
public:
vector<int> successfulPairs(const vector<int> &spells, vector<int> potions, long long success) {
sort(potions.begin(), potions.end());
vector<int> valid_pairs(spells.size(), 0);
for (int i = 0; i < spells.size(); ++i) {
long long min_multiplier = (success + spells[i] - 1) /
spells[i]; // compute ceil(success / spells[i]) using integer arithmetic
valid_pairs[i] =
potions.end() - lower_bound(potions.begin(), potions.end(), min_multiplier);
}
return valid_pairs;
}
};