380. Insert Delete GetRandom O(1)
1. Description
Implement the RandomizedSet class:
- bool insert (int val) Inserts an item val into the set if not present. Returns true if the item was not present, false otherwise.
- bool remove(int val) Removes an item val from the set if present. Returns true if the item was present, false otherwise.
- int getRandom() Returns a random element from the current set of elements (it’s guaranteed that at least one element exists when this method is called). Each element must have the same probability of being returned.
2. Follow Up
- Could you implement the functions of the class with each function works in average O(1) time?
3. Example
Example 1:
Input
[“RandomizedSet”, “insert”, “remove”, “insert”, “getRandom”, “remove”, “insert”, “getRandom”]
[[], [1], [2], [2], [], [1], [2], []]
Output
[null, true, false, true, 2, true, false, 2]
Explanation
RandomizedSet randomizedSet = new RandomizedSet();
randomizedSet.insert(1); // Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomizedSet.remove(2); // Returns false as 2 does not exist in the set.
randomizedSet.insert(2); // Inserts 2 to the set, returns true. Set now contains [1,2].
randomizedSet.getRandom(); // getRandom() should return either 1 or 2 randomly.
randomizedSet.remove(1); // Removes 1 from the set, returns true. Set now contains [2].
randomizedSet.insert(2); // 2 was already in the set, so return false.
randomizedSet.getRandom(); // Since 2 is the only number in the set, getRandom() will always return 2.
4. Constraints
- $-2^{31}$ <= val <= 2$^{31} - 1$
- At most 105 calls will be made to insert, remove, and getRandom.
- There will be at least one element in the data structure when getRandom is called.
5. Solutions
n is the number of insert or delete operations
Time complexity: O(1)
Space complexity: O(n)
My Accepted Solution(Follow Up)
class RandomizedSet {
public:
RandomizedSet() {}
bool insert(int val) {
if (_value_index.find(val) == _value_index.end()) {
_values.push_back(val);
_value_index[val] = _values.size() - 1;
return true;
} else {
return false;
}
}
bool remove(int val) {
if (_value_index.find(val) == _value_index.end()) {
return false;
} else {
int index = _value_index[val];
_value_index[*_values.rbegin()] = index;
_values[index] = *_values.rbegin();
_values.pop_back();
_value_index.erase(val);
return true;
}
}
int getRandom() {
return _values[rand() % _values.size()];
}
private:
map<int, int> _value_index;
vector<int> _values;
};