436. Find Right Interval
1. Description
You are given an array of intervals, where intervals[i] = [$start_i$, $end_i$] and each $start_i$ is unique.
The right interval for an interval i is an interval j such that $start_i$ >= $end_i$ and $start_i$ is minimized. Note that i may equal j.
Return an array of right interval indices for each interval i. If no right interval exists for interval i, then put -1 at index i.
2. Example
Example 1:
Input: intervals = [[1,2]]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: intervals = [[3,4],[2,3],[1,2]]
Output: [-1,0,1]
Explanation: There is no right interval for [3,4].
The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3.
The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
Input: intervals = [[1,4],[2,3],[3,4]]
Output: [-1,2,-1]
Explanation: There is no right interval for [1,4] and [3,4].
The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
3. Constraints
- 1 <= intervals.length <= $2 * 10^4$
- intervals[i].length == 2
- $-10^6$ <= $start_i$ <= $end_i$ <= $10^6$
4. Solutions
Binary Search & Sorting
n = intervals.size()
Time complexity: O(nlogn)
Space complexity: O(n)
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>> &intervals) {
vector<int> left_borders(intervals.size());
unordered_map<int, int> left_border_index;
for (int i = 0; i < intervals.size(); ++i) {
left_borders[i] = intervals[i][0];
left_border_index[left_borders[i]] = i;
}
sort(left_borders.begin(), left_borders.end());
vector<int> result(intervals.size(), -1);
for (int i = 0; i < intervals.size(); ++i) {
int right_border = intervals[i][1];
for (int left = 0, right = left_borders.size(); left < right;) {
int mid = (left + right) / 2;
left_borders[mid] >= right_border
? (right = mid, result[i] = left_border_index[left_borders[mid]])
: left = mid + 1;
}
}
return result;
}
};