53. Maximum Subarray
1. Description
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
2. Follow Up
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
3. Example
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [0]
Output: 0
Example 4:
Input: nums = [-1]
Output: -1
Example 5:
Input: nums = [-2147483647]
Output: -2147483647
4. Constraints
- 1 <= nums.length <= $2 * 10^4$
- $-2^{31}$ <= nums[i] <= $2^{31} - 1$
5. Solutions
Dynamic Programming
n = nums.size()
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public:
int maxSubArray(const vector<int> &nums) {
int max_sum = INT_MIN;
for (int i = 0, sum = 0; i < nums.size(); ++i) {
sum = nums[i] + max(sum, 0);
max_sum = max(sum, max_sum);
}
return max_sum;
}
};