565. Array Nesting
1. Description
A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], … } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
2. Example
Example 1:
Input: A = [5,4,0,3,1,6,2]
Output: 4
Explanation:
A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.
One of the longest S[K]:
S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
3. Note
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
4. Solutions
My Accepted Solution
n = m_nums.size()
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public:
// int arrayNesting(vector<int>& nums)
int arrayNesting(vector<int>& m_nums) {
int maxNestLength = 0;
for (int i = 0; i < m_nums.size(); ++i) {
if (m_nums[i] >= 0) {
int index = i, length = 0;
while (m_nums[index] >= 0) {
int oldIndex = index;
index = m_nums[index];
m_nums[oldIndex] = INT_MIN;
length++;
}
maxNestLength = max(length, maxNestLength);
if (maxNestLength >= (m_nums.size() + 1) / 2) {
break;
}
}
}
return maxNestLength;
}
};