62. Unique Paths
1. Description
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
2. Example
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
- Right -> Down -> Down
- Down -> Down -> Right
- Down -> Right -> Down
Example 3:
Input: m = 7, n = 3
Output: 28
Example 4:
Input: m = 3, n = 3
Output: 6
3. Constraints
- 1 <= m, n <= 100
- It’s guaranteed that the answer will be less than or equal to $2 * 10^9$.
4. Solutions
My Accepted Solution
m = rows, n = colums
Time complexity : O(mn)
Space complexity : O(mn)
class Solution
{
public:
// int uniquePaths(int m, int n)
int uniquePaths(int rows, int colums)
{
vector<vector<int>> possiblePaths(rows, vector<int>(colums));
for(int row = 0; row < rows; row++)
{
for(int colum = 0; colum < colums; colum++)
{
if(row == 0 || colum == 0)
possiblePaths[row][colum] = 1;
else
possiblePaths[row][colum] = possiblePaths[row][colum - 1] + possiblePaths[row - 1][colum];
}
}
return possiblePaths.back().back();
}
};
4.1 Math - Permutation
// TO DO
class Solution
{
public:
// int uniquePaths(int m, int n)
int uniquePaths(int rows, int colums)
{
}
};
4.2 Dynamic Programming(Less Space)
// TO DO
class Solution
{
public:
// int uniquePaths(int m, int n)
int uniquePaths(int rows, int colums)
{
}
};