622. Design Circular Queue
1. Description
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
- MyCircularQueue(k) Initializes the object with the size of the queue to be k.
- int Front() Gets the front item from the queue. If the queue is empty, return -1.
- int Rear() Gets the last item from the queue. If the queue is empty, return -1.
- boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
- boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
- boolean isEmpty() Checks whether the circular queue is empty or not.
- boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
2. Example
Example 1:
Input
[“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
3. Constraints
- 1 <= k <= 1000
- 0 <= value <= 1000
- At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
4. Solutions
My Accepted Solution
Time complexity: O(1)
Space complexity: O(k)
// array
// Using an array is better than using a list, we don't need to new and delete a class node.
class MyCircularQueue {
public:
MyCircularQueue(int k) : size(0), capacity(k), headIndex(0), tailIndex(0) {
values = vector<int>(k);
}
bool enQueue(int value) {
if (isFull()) {
return false;
} else {
++size;
values[tailIndex] = value;
tailIndex = (tailIndex + 1) % capacity;
return true;
}
}
bool deQueue() {
if (isEmpty()) {
return false;
} else {
--size;
headIndex = (headIndex + 1) % capacity;
return true;
}
}
int Front() {
if (isEmpty()) {
return -1;
} else {
return values[headIndex];
}
}
int Rear() {
if (isEmpty()) {
return -1;
} else {
return values[(tailIndex + capacity - 1) % capacity];
}
}
bool isEmpty() {
return size == 0;
}
bool isFull() {
return size == capacity;
}
private:
int size;
int capacity;
int headIndex; // headIndex is the index of the first value in the queue
int tailIndex; // tailIndex is the index to hold the next value
vector<int> values;
};