64. Minimum Path Sum
1. Description
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
2. Example
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
3. Constraints
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 200
- 0 <= grid[i][j] <= 100
4. Solutions
My Accepted Solution
m = grid.size(), n = grid[0].size()
Time complexity : O(mn)
Space complexity : O(n)
class Solution {
public:
int minPathSum(const vector<vector<int>> &grid) {
auto dp = grid[0]; // dp[i] means min path sum to i-th element
for (int i = 1; i < dp.size(); ++i) {
dp[i] += dp[i - 1];
}
for (int i = 1; i < grid.size(); ++i) {
dp[0] += grid[i][0];
for (int j = 1; j < dp.size(); ++j) {
dp[j] = grid[i][j] + min(dp[j - 1], dp[j]);
}
}
return dp.back();
}
};