852. Peak Index in a Mountain Array
1. Description
An array arr a mountain if the following properties hold:
- arr.length >= 3
- There exists some i with 0 < i < arr.length - 1 such that:
- arr[0] < arr[1] < … < arr[i - 1] < arr[i]
- arr[i] > arr[i + 1] > … > arr[arr.length - 1]
Given a mountain array arr, return the index i such that arr[0] < arr[1] < … < arr[i - 1] < arr[i] > arr[i + 1] > … > arr[arr.length - 1].
You must solve it in O(log(arr.length)) time complexity.
2. Example
Example 1:
Input: arr = [0,1,0]
Output: 1
Example 2:
Input: arr = [0,2,1,0]
Output: 1
Example 3:
Input: arr = [0,10,5,2]
Output: 1
3. Constraints
- 3 <= arr.length <= $10^5$
- 0 <= arr[i] <= $10^6$
- arr is guaranteed to be a mountain array.
4. Solutions
Binary Search
n = arr.size()
Time complexity: O(logn)
Space complexity: O(1)
class Solution {
public:
int peakIndexInMountainArray(const vector<int> &arr) {
int result = 0;
// arr is guaranteed to be a mountain array
// so we don't need to consider if the peak index is 0 or arr.size() - 1
for (int left = 0, right = arr.size(); left < right;) {
int mid = (left + right) / 2;
arr[mid] < arr[mid + 1] ? left = mid + 1 : right = mid;
result = left;
}
return result;
}
};