931. Minimum Falling Path Sum

1. Description

Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).

2. Example

Example 1:

Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.

Example 2:

Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.

3. Constraints

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

4. Solutions

Dynamic Programming

n = matrix.size()
Time complexity: O($n^2$)
Space complexity: O(n)

// we don't change the original matrix even it will help us save some memory
class Solution {
public:
    int minFallingPathSum(const vector<vector<int>> &matrix) {
        vector<int> falling_sum(matrix.size() + 2);
        falling_sum.front() = falling_sum.back() = 10000; // 100(max rows) * 100(max value)
        for (int row = 0; row < matrix.size(); ++row) {
            int last_row_falling_sum = 10000; // we need the last row's value, but we will update it
            for (int i = 1; i <= matrix.size(); ++i) {
                int temp = falling_sum[i];
                falling_sum[i] = matrix[row][i - 1] +
                    min({last_row_falling_sum, falling_sum[i], falling_sum[i + 1]});
                last_row_falling_sum = temp;
            }
        }

        return *min_element(falling_sum.begin(), falling_sum.end());
    }
};
comments powered by Disqus