994. Rotting Oranges

1. Description

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,
  • 1 representing a fresh orange, or
  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

2. Example

Example 1:

Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

3. Constraints

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] is 0, 1, or 2.

4. Solutions

n is the number of elements in root
Time complexity: O(n)
Space complexity: O(n)

class Solution {
public:
    int orangesRotting(vector<vector<int>> grid) {
        queue<pair<int, int>> rot_orange;
        queue<pair<int, int>> orange_to_rot;
        int fresh_orange = 0;
        for (int i = 0; i < grid.size(); ++i) {
            for (int j = 0; j < grid[i].size(); ++j) {
                if (grid[i][j] == 1) {
                    ++fresh_orange;
                } else if (grid[i][j] == 2) {
                    rot_orange.push({i, j});
                }
            }
        }

        if (fresh_orange == 0) {
            return 0;
        }
        if (rot_orange.empty()) {
            return -1;
        }

        int minute = 0;
        while (!rot_orange.empty()) {
            while (!rot_orange.empty()) {
                auto position = rot_orange.front();
                rot_orange.pop();

                traverse_({position.first + 1, position.second}, grid, orange_to_rot, fresh_orange);
                traverse_({position.first - 1, position.second}, grid, orange_to_rot, fresh_orange);
                traverse_({position.first, position.second + 1}, grid, orange_to_rot, fresh_orange);
                traverse_({position.first, position.second - 1}, grid, orange_to_rot, fresh_orange);
            }

            ++minute;
            rot_orange = move(orange_to_rot);
        }

        return fresh_orange == 0 ? minute - 1 : -1;
    }

private:
    void traverse_(
        pair<int, int> position,
        vector<vector<int>> &grid,
        queue<pair<int, int>> &orange_to_rot,
        int &fresh_orange) {
        if (0 <= position.first && position.first < grid.size() && 0 <= position.second &&
            position.second < grid[0].size()) {
            if (grid[position.first][position.second] == 1) {
                grid[position.first][position.second] = 2;
                --fresh_orange;
                orange_to_rot.push({position.first, position.second});
            }
        }
    }
};
comments powered by Disqus